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Abstract 

To investigate  the  atmosphere of the  Earth,  and  to  detect changes in our  en- 

vironment,  the  Environmental  Satellite (ENVISAT) will be  launched by the 

European  Space Agency (ESA) in a  polar  orbit in the mid of the year 2001. 

One of its payload instruments is the Fourier spectrometer MIPAS (Michel- 

son  Interferometer for Passive  Atmospheric Sounding), designed to measure the 

spectral  thermal emission of molecules  in the  atmosphere in a limb viewing 

mode. The goal of this  experiment is to derive vertical profiles of pressure and 

temperature,  as well as of the  trace gases 03, HZO,  CH4, N 2 0 ,  and H N 0 3  from 
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the  spectra  operationally  on a global scale. A major topic in the  analysis of 

the  computational  methodology to obtain  the profiles  is  how available a priori 

knowledge can  be  used, and how this  a priori knowledge affects the correspond- 

ing results. Retrieval methods were compared and  it was  shown that  the  optimal 

estimation  formalism  can  be  used in a highly flexible  way  for this kind of data 

analysis. Beyond this, diagnostic tools,  such  as  estimated  standard  deviation, 

vertical resolution, or degrees of freedom,  have  been used to characterize  the re- 

sults.  Optimized  regularization parameters have been  determined  and  the  huge 

influence of the choice of the  regularization  and discretization on the  result was 

demonstrated. In particular, we show that  the  optimal  estimation formalism 

can  be used to emulate  purely  smoothing  constraints. 

OCIS codes: 000.3860 Mathematical  methods in physics, 000.4430 Numerical 

approximation  and analysis, 280.0280 Remote sensing, 300.6340 Spectroscopy, 

infrared. 

Additional Key Words:  Retrieval; Regularization. 

1 Introduction 

Remote sensing of the  atmosphere, especially from satellites, allows to deter- 

mine the global composition of the  atmosphere  and  their  temporal changes. 

For this  purpose  the  European  Space Agency (ESA) will launch the  European 
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environmental  satellite  ENVISAT [l] in the mid of 2001. One of its payload 

instruments is the Michelson Interferometer for Passive Atmospheric  Sounding 

(MIPAS) (cf. [a], [3]). MIPAS is a limb  viewing  Fourier-Spectrometer  measur- 

ing the infrared emission of the molecules in the  atmosphere.  The goal of the 

MIPAS experiment is to measure  vertical profiles of pressure, temperature  and 

mixing  ratios of 0 3 ,  HaO,  CH4,  NaO, and HN03 .  

To obtain these target  quantities from the  measurements,  an inverse problem 

has  to  be solved. There  exist various methods to solve such  kind of problems 

(cf. [4], [5], [SI). In most cases it is set  up  as  a least squares  problem,  where  the 

different solution formulas are  quite  similar. In this  study different applications 

of the  optimal  estimation formalism [7] are assessed. The  impact of constraints 

is  shown analytically as well as in numerical  experiments  under consideration 

of diagnostic tools  such  as  retrieval  error [8], vertical resolution [9] and degrees 

of freedom. 

We proceed as follows: The  formal description of the inverse problem and  the 

basic definitions are given  in Section 2. An  overview of the formalism for solving 

the  least  squares problem and  the  retrieval  strategy used  is presented in Section 

3. Furthermore  comparisons  between  optimal  estimation and  Tikhonov  regular- 

ization [lo] are made.  In Section 4 the retrieval result is analyzed  with  respect 

to  the influence of regularization.  The  theoretical considerations are applied to 

a  MIPAS  observation  mode in Section 5. The  predicted retrieval characteristics 

are  illustrated in selected examples. Finally, Section 6 gives a  summary  and 

some conclusions of our  work. 
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2 Problem  Description  and  Definitions 

The retrieval problem in atmospheric  limb  sounding is to  extract vertical pro- 

files of atmospheric  state  parameters from  a  limb  sequence of emission spectra 

of different tangent heights. An exact physical description of the problem re- 

quires continuous functions: The  spectrum is a  continuous function with fre- 

quency, while vertical profiles to be  retrieved  are  continuous functions with 

height.  Measurements  are  always of discrete  nature. In this sense most of the 

inverse problems  are formally ill-posed or under-determined  [5]. To overcome 

this,  the continuous functions of the  vertical profiles are discretely sampled  and 

arranged in a  state vector x E Rn of unknown quantities, whereby we will apply 

in the following the terminology  used by Rodgers  [5].  This vector contains  the 

finite number of unknown  quantities which shall be  determined in the  retrieval. 

The  width of the grid on which the  atmospheric  state  parameters  are  repre- 

sented  depends  both  on  practical considerations and on the required altitude 

resolution. 

The m-dimensional  measurement vector y contains all measured  radiances of 

a complete  limb  scan to be  considered for inversion. The measurement is su- 

perimposed by instrumental  random noise. The correlation between the  state 

vector x, the measurement vector y, the m-dimensional noise vector E ,  and  the 

radiative  transfer model F is  given by 

y = F(x) + E .  

While the forward model maps  from the  state space (vertical profiles) into  the 
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measurement  space (emission spectra), we are  interested in the inverse mapping, 

i.e.  an  appropriate  determination of state vector x from the  measurements. In 

our case the inverse problem is formally  over-determined, i.e. the number of 

measurements is higher than  the number of state  parameters (m > n). Therefore 

the inverse problem  can  be  formulated as a least  squares  problem: 

where S, is the covariance matrix of the  measurement.  The nonlinearity of F(x) 

often requires Eq. (2) to  be solved by  Newtonian iteration: 

where K is the  Jacobian of F with respect to x and  the  subscript i denotes 

the  iteration  index.  This solution uses information  only  from the  measurement. 

Additional  knowledge about  the solution can  be added by inclusion of a con- 

straining  term 

IIY - F(X)ll&l + R(x,xa, R) 

= (y - F(x))~S;'  (y - F(x)) + (x - x , ) ~ R ( x  - x,), (4) 

where R is the  constraining  function, x, an a priori known state vector and R 

a  regularization  matrix.  The  related  iterative  solution  is given  by 

xi+' = xi  + (KTS;'K~ + R ) - ~  X (5) 

[KTS;'(y - F(xi)) - R(xi - X,)]. 

Depending  on the choice of the regularization matrix, different kinds of con- 

straints can  be  included in the least squares  problem.  In the following section 
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two possible choices of the regularization term will examinated in detail and 

discussed against each other. 

3 Retrieval strategy 

The  iterative solution given by Eq. (5) can  be seen as  a weighted mean  between 

the information  contained in the measurement and  the  information added by 

the  constraint.  Determination of the  appropriate weight of the constraint is a 

critical part in the design of a retrieval  strategy. 

In the following we will examine  two  kinds of constraints in more  detail:  Optimal 

estimation [7] and Tikhonov  regularization [lo]. In case of optimal  estimation, 

the difference between the a priori  profile x, and  the solution  is  kept  small. The 

regularization matrix  is R = S;', the inverse of the a priori covariance matrix, 

and  the  iterative solution is 

Xi+' = x i  + (KTSF'K~ + s;l)-l X (6) 

[KTS;'(y - F(xi)) - S;'(xi -x,)]. 

Has the inverse of the covariance matrix for the measured profile KTS;'K larger 

entries than  the inverse of the a priori covariance matrix S;', the retrieval  is 

dominated by the measurement  with  its noise. The same  considerations  can be 

applied vice versa. If the a priori information comes  from an  independent  mea- 

surement or if x is part of a climatological ensemble  following Gaussian  statistics 

which is represented by x, and S,, the optimal  estimation  solution is the most 

probable  solution [7]. However, if there  is no  independent  measurement which 
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provides x, and if x is not  part of the  statistical ensemble which  is represented 

by x, and S,, the  result is to some degree  biased  towards the a priori  profile. 

A solution constrained in its  shape only rather  than in its  absolute values may 

be  more  desirable in order  not to miss unexpected  atmospheric  phenomena. For 

this  purpose,  Tikhonov  regularization is a  powerful  tool. 

In case of Tikhonov  regularization  the  regularization  matrix  becomes R = 

aLTL, where a is a regularization  parameter  and L a regularization  matrix. 

This  kind of regularization is also known as Twomey [ll] or Phillips [la] regu- 

larization,  and  the  iterative solution is 

xifl = x i  + ( K T S F ~ K ~  + a ~ T ~ ) - l  X 

[ K T S ; ~ ( ~  - F ( ~ ~ ) )  - a ~ T ~ ( ~ i  - X,)]. 

The  parameter a determines  the weight of the  regularization  and  it is also 

important to chose a appropriate  to  the problem.  One way to fix this  parameter 

is the L-curve method [13]. 

There  are several possibilities to set  up  the  regularization  matrix L. The sim- 

plest one is the  identity  matrix, L = I. This  results in a retrieval equivalent 

to optimal  estimation  with a diagonal a priori  covariance matrix S, = $1. In 

order to  obtain  a  smooth solution the discrete first derivative operator is  useful 

as  smoothing  matrix, L = L1. The discrete first derivative operator can  be 

derived as follows: the first derivative can be  approximated  as 

where x k  is the  state  parameter  at height z k .  By approximation of the first 



derivative by a differential quotient and in case of equidistant  altitude  grid  the 

operator is defined as 

] N N 
=: LlX, 

where L1 E R(n-l)xn . This  and higher  order  kind of operator  acts  just in 

smoothing  and  not  in biasing the  solution. 

In the case that two  different types of state  parameters being  jointly  fitted which 

require different approaches of regularization  (optimal  estimation  and  smoothing 

without biasing) it is desirable to have  one  formalism which supports  both  types 

of constraints.  In order to gain a  deeper  understanding of the  smoothing effect 

of the off-diagonal elements of S a  we try  to express CXLTL~ by a  matrix of the 

format of an inverse covariance matrix. 

A covariance matrix consists of diagonal (variances) and off-diagonal (covari- 

ances  or  non-normalized correlations) elements. In  the case  only the variances 

of an a priori profile are known, covariances are often described by an  exponen- 

tial decay 

where w is a  length  determining the  correlation  between  the  parameters at  dif- 

ferent heights zi. In case of equidistant  altitude grid and variances of all the 

same size (assumed for clearer presentation  but  without affecting the conclu- 
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sions) Eq. (10) reads 

If f is  chosen very  large,  the  non-diagonal  elements of S a  are very  small and  the 

parameters in the  vertical profile are only weakly correlated.  This  corresponds to 

the case that  the a priori covariance matrix is diagonal  and the corresponding 

Tikhonov matrix is identity.  The case 6 << 1 is for our  application of more 

interest  because  the off-diagonal elements are  just unessentially smaller than 

the diagonal elements, and  the  state  parameters  are strongly correlated. 

The covariance matrix above  can  be  inverted and we obtain 

1 1 
d 1 - exp(-2;) A X  

s-1 = - . 

- exp(-f) I + exp(-a$) - exp(-;) A . . .  0 

0 

. .  . -exp(-;) A I + exp(-2;) A - exp(- i )  

0 . .  . 0 - exP(-$, 1 
I 

For the case of 6 << 1 the  exponential function in Eq. (11) and  (12) can  be 

expanded at zero: 

A A 
exp(-;) x 1 - -. 

W 

Putting  this  approximation  into Eq. (12) and neglecting the  addends which 
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imply $, the inverse of the a priori covariance matrix can  be  expressed as 

This means that  an a priori covariance matrix can  be set up  that  it  acts  approx- 

imately in the same way a s  the discrete first derivative operator L1. Certainly 

this equivalence is only approximate, since truncation of the expansion  causes 

a regular matrix S i 1  being  transformed to a singular matrix of the  type LTLl. 

Therefore the  optimal  estimation  formalism  can  be used either in the origi- 

nal sense of weighting the measured and  the a priori profile, or in the sense of 

smoothing the solution without considerably shifting it towards the a priori profile. 

Due to  the  approximate equivalence of both  methods, we henceforth  restrict  our 

description to optimal  estimation terminology. 

4 Diagnostics 

Following Rodgers [5], several powerful diagnostic tools are available and will 

be used later-on for assessment of the proposed retrieval approach: covariance 

matrix of the retrieved solution,  averaging kernel matrix,  and degrees of freedom. 

The covariance matrix of the solution includes the  estimated  error of the  state 
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parameters  and  their inter-level correlations: 

Another important  quantity  to assess the  retrieval is vertical resolution. The 

vertical resolution depends  on  the sensitivity of the retrieval to changes in the 

true profile, 

where j z  is the  estimated profile in the  linear case and D, describes the sensitivity 

of the retrieval concerning  changes in  the  measurement 

dii D --. 
- dy 

Matrix A usually is called averaging kernel matrix,  and is discussed extensively 

in the  literature (cf. [14], [6]). There  exists several ways to define the vertical 

resolution of the retrieval as a function of A [9]. We define the  vertical resolution 

as  the  width at the half maximum of the column of the averaging kernel matrix 

A. 

The averaging kernel matrix for the  optimal  estimation formalism is calculated 

8 S  

A = (K%;'K + s;')-'K~s;~K. (17) 

If there is no  constraining  part in the least squares  problem (Eq. (2)), the 

averaging kernel matrix is the  identity  matrix I. In  this case altitude resolution 

is determined  by  the grid used for representation of x. 

The  estimated  solution for optimal  estimation  can also be  expressed in terms of 

the averaging kernel. In the linear case (y = Kx+c)  the gained  equation allows 
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to separate  the  true  parameters  and  the a priori parameter.  The  estimated 

solution is [8] 

2 = X, + A ( x - x , ) + D , E  

= AX + (I - A)x, + Dye, (18) 

where the averaging kernel A is the weight of the  true  state,  the  matrix (I - A) 

the weight of the a priori state  and D, the weight of the noise. Again, in case 

of no  constraints (A = I) the a priori part of Eq.  (18)  disappears  and  the  result 

only  depends on the  true  state  and  the noise. 

Because  the  matrices of the weights A, (I - A), and D, are usually all non- 

diagonal,  it is not  trivial to quantify  the different parts of the  retrieval formula 

Eq. (18). Rodgers [5] proposed a transformation in a space  where the  matrices 

described  above become diagonal. For this  purpose,  the  Jacobian K has to be 

transformed  and a singular value decomposition (SVD) is performed [15]: 

K = SF”KS2 = UAVT, 
1 1  

(19) 

where U and V are  orthogonal  matrices  and A is a diagonal matrix  with  the 

singular values Xi of K as  its diagonal elements. Furthermore is U a m x 7~ 

matrix, V and A are n x n matrices.  The  state vector and  the noise vector are 

transformed  as follows: 

With  the singular value decomposition of K (Eq. (19)) and  Eq. (20) we receive 
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for the  transformed  estimated  state  parameters (see appendix A) 

x' = [I + A 2 ] - 1 A 2 ~ '  + [I + A2]-lx; + [I + A2]"Ad. (21) 

The  matrices in the different addends  are diagonal  now.  Therefore the  equation 

above  can  be  written  component wise 

I t  can be seen  from Eq. (22), that  the transformed  state  parameter 2; is domi- 

nated by the  true profile if the corresponding singular value is much  larger  than 

1 (Xi >> 1).  For cases with Xi << 1 the corresponding state  parameter is  de- 

termined by the a priori knowledge. For singular values Xi M l ,  the  estimated 

state  parameter is  influenced by the  true  state,  the a priori state,  and  the noise 

with the same weight. The only  disadvantage of this kind of representation is 

that  the transformed  quantities lose their simple physical meaning. 

Eq. (22) leads to the definition of the degrees of freedom for signal [5]: 

The singular values with Xi << 1 do  not  contribute to  the degrees of freedom 

because  they will be  determined  by  the a priori knowledge. Therefore the num- 

ber of degrees of freedom is not fixed with the dimension of the  state  space n 

but  rather  with  the  quantity  computed in Eq. (23). 

The diagnostic tools where the singular value  decomposition of the  transformed 

Jacobian is used, is  for special application to  the optimal  estimation  formalism. 

The  singularity of CXLTL~ makes it necessary to use different analysis which is 

described in Hansen [13]. 
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5 Application to a MIPAS Observation Mode 

Retrieval methods  and diagnostic tools discussed in the previous Sections will 

be  applied to simulated  methane and ozone retrievals typical for MIPAS  on 

ENVISAT. 

5.1 General assumptions 

The forward  modeling is performed  with the  Karlsruhe  Optimized  and  Precise 

Radiative  transfer  Algorithm  (KOPRA). Details and  characteristics of KOPRA 

can be found in [16], [17], and [18]. The forward  model  KOPRA is used in the 

retrieval part of the MIPAS Level 2 off-line processor (cf. [19], [20], and [21]). 

Synthetic measurements  have  been  generated by calculating a  limb  sequence of 

reference spectra by KOPRA, which then were superimposed  by  synthetically 

generated noise of realistic amplitude  and covariance. Other  instrumental  char- 

acteristics like  field-of-view (FOV)  and  spectral resolution were also considered 

(see Tab. 1). For the  additional  apodization of the  spectra  the  strong version of 

the Norton-Beer  apodization was used. Non-local thermodynamic  equilibrium 

was  not  considered even though  the forward  model  KOPRA is able to model it. 

In contrast to most  other  forward  models,  the  Earth’s ellipticity was taken  into 

account.  The limb  measurements were simulated at  16 tangent  heights  from 53 

km down to 8 km in 3 km steps.  The  actual nominal  observation  mode was 

not  used  here  because the existing ESA studies rely on the measurement  mode 

described  above  and the possibility of comparisons were quite  limited. 

From the  entity of measurements  a spectral  subset, so-called microwindows [22], 
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has been selected for analysis. The  occupation  matrices for methane  and ozone, 

shown  in Tables 2 and 3, contain the  information which  microwindow  is used at  

which tangent  height.  The dimension of the  measurement vector for methane 

is m = 3958 and m = 2085 for ozone, respectively. Furthermore we used pres- 

sure,  temperature  and  constituent profiles as provided by [23] to generate  the 

synthetic  measurements  as well as for initial  guess  and a priori profiles. These 

profiles  will be called ”standard profiles” in the following. 

The retrieval is performed  on an fine altitude  grid,  i.e. a grid from 8 km to 53 km 

with a grid width of 1 km.  Therefore the dimension of the  state vector is n = 46. 

The fine grid allows to represent small scale vertical  structures in the vertical 

profiles; this  large  number of unknowns to  be  retrieved from  measurements at 

only 16 tangent  altitudes leads to an ill-posed problem.  Therefore regularization 

is required. We apply  the  optimal  estimation formalism in the  smoothing sense 

(Eq. (14)). This  corresponds to large off-diagonal values of Sa with  the intention 

to smooth  the solution rather  than biasing it. 

5.2 Application to methane 

Methane has  strong lines in the considered  infrared region. The retrieval of 

the vertical profile should lead to results  with a relative error smaller than 

10 % in most altitude regions. The power of the developed method,  optimal 

estimation  without biasing, is demonstrated in this  example.  The reference 

profile  for methane to generate  the  synthetic  data is a scaled version  of the 

standard profile  by a  factor of 0.8. 
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Fig. 1 shows the result of the  methane retrieval for an a priori covariance matrix 

S a  which is constant  with  height.  In  this  example  the  diagonal is [ S , ] i i  = d = 

10.0 ppmv2 V i ,  and  the correlation  parameter is w = 2000.0 km.  The volume 

mixing ratio in units of parts  per million by  volume (ppmv) is depicted versus 

altitude.  The  dotted line represents the a priori and  the  initial guess profile, 

the  starting  point of the  iteration.  The dashed line shows the scaled  methane 

reference profile which had been  used to create  the  simulated measurements. 

The solid line represents the retrieved profile. The reference and  the retrieved 

profile show a good agreement which leads to  an absolute  root-mean-square 

(abs.  rms)  error of 0.0306 ppmv.  This  quantity is computed  as follows: 

n 

In Fig. 2 the absolute  deviation  between the reference profile and  the solution is 

illustrated  as a function of altitude.  The solid line shows the empirical  deviation, 

which depends  on  the  actual noise E the simulated  measurement  is  superimposed 

with. It is  nearly at  all heights less than 0.05  ppmv. The  dashed curve shows 

the  estimated  absolute deviation as evaluated by Eq.  (15).  The displayed values 

are  the  square  roots of the diagonal  elements of the solution covariance matrix 

S .  The  estimated  deviation envelopes the real  deviation  quite well. Further- 

more it is obvious, that  the estimated  deviation  is  nearly  constant  with  height. 

This  corresponds  with the height  constant a priori covariance matrix Sa which 

dominates the  shape of the  estimated deviation. 

Also the  altitude  distribution of the relative  deviation  (Fig. 3) is instructive. It 
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is computed by 

and  the  related relative root-mean-square is 4.69 %. The real relative  deviation 

(solid curve in Fig. 3)  is smaller than 10 % at  all heights. The  relative  estimated 

standard  deviation, which is the  the  square-root of the diagonal of Eq. (15) 

divided by the reference profile, increases continuously  with  height. The reason 

of this behavior is the decreasing methane  amount with height (Fig. 1) and  the 

height-independent  absolute  deviation  (Fig. 2). 

In  order to evaluate  the influence of the regularization on this  result, we will use 

the  methods derived in Section 4. In Fig. 4 the averaging kernel is displayed in  a 

scaled form,  where the  bright regions correspond to large values and  dark regions 

to small ones. The  matrix is dominated  by  the diagonal, that means that  the 

retrieved  state  parameters reflect the  true profile quite well. But  the  smoothing 

influence of the a priori covariance matrix produces also off-diagonal elements. 

The single columns of the  averaging kernel are shown  in Fig. 5. The  width of 

the columns of A (vertical resolution) is displayed in Fig. 6. The mean  vertical 

resolution which  is driven by the chosen regularization is 3.31 km and exceeds 

slightly the  distance of two  consecutive  tangent heights (3  km). However, the 

chosen constraint  lets  enough  variability to detect small-scaled structures. 

We will complete the diagnostic of the retrieval with the singular value  decompo- 

sition of the  transformed  Jacobian (Eq. (19)). The singular values are displayed 

in order of size in Fig. 7. The  16th value lies directly  above  the  dashed line 

corresponding to  the value 1. Therefore  most of the singular values are smaller 
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than one and  the degrees of freedom are  calculated with  Eq. (23) to 15.9. This 

means that only about 16 parameters of the  state vector is determined by the 

measurement  and  the  remaining 30 are  determined by the  constraint.  This  re- 

sult is not  surprising,  rather  the basis for the choice of the  constraint.  Because 

we used an observation scenario with 16 tangent  heights,  the vertical resolution 

of MIPAS  on ENVISAT is 3  km,  and  the  fact that  the  spectral resolution in 

this case is not  high  enough to gain additional  information of values between 

the  tangent heights, we do  not  expect  more  degrees of freedom than  the  number 

of tangent  heights.  This conclusion is supported by the characteristics of Fig. 5, 

where it is remarkable  that always three columns are peaked at  nearly the  same 

height.  That  means  the main  information in the measured spectra of MIPAS 

ENVISAT  originates at  the  tangent  heights  (distance between  two height is 3 

km) and  the two retrieved parameters  above  the  tangent heights correlates with 

the  actual values. 

This  fact is also the explanation for the  fluctuating of the  estimated  deviations 

(Figures 2 and 3) and  the values of the  vertical resolution (Fig. 6). The worse 

estimated  deviations  and  the worse vertical resolution correspond  with the re- 

trieval parameter  at an altitude of 2  km  above a tangent  point.  Therefore at  

these  points is least information about  the  target species available. The retrieval 

parameters  at  an  altitude of 1 km above a tangent height contain nearly as much 

information  as at  the  tangent point itself (see Figures  2  and  3). 

The  proportion of the measurement and  the a priori can also be seen  in Fig. 8. 

As expected  the  two curves intersect between the  16th  and  17th singular value 
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Xi.  The  constraint  acts like a  truncated SVD, where the expansion is not  "hard" 

truncated at  a single value but  "smooth"  in  a specific range. 

To sum up  the diagnostic of the retrieval with height constant  regularization for 

methane,  it can  be seen that  both  the  absolute  deviation (0.0306 ppmv)  and  the 

relative deviation (4.69 %) are very small. The  example  demonstrates  that  the 

applied method  leads  to  stable solution which can be  analyzed  in  detail  with 

the available diagnostic tools. 

5.3 Height-dependent and -independent constraints ap- 

plied to ozone 

The regarded  infrared spectral range has also strong ozone lines. For reference, 

an ozone hole profile  was used in order to assess the  capability of the  algorithm 

to retrieve highly structured vertical profiles from MIPAS measurements. 

The  result of the ozone retrieval for an a priori  covariance matrix S a  which is 

constant  with height is  shown in Fig. 9. The diagonal is set to [ S , ] i i  = d = 

100.0 ppmv2 V i ,  and  the correlation parameter is w = 5000.0 km.  The  dotted 

line represents  again  the a priori  and  the  initial guess profile. Note that  the 

a priori  profile has a significant different shape  in comparison to  the reference 

profile (dashed  line), which is the profile under  ozone hole conditions. It is 

characterized by a reduced  amount of ozone  between 15 km and 40 km. The 

visual good  agreement  between the reference and  the  retrieved profile (solid 

line) is manifested in a  small  absolute  root-mean-square (abs. rms)  error of 

0.111 ppmv. 
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In Fig. 10 the  absolute  deviation  between  the reference profile and  the solution 

is highlighted. It exceeds the value of 0.2 ppmv  only at  altitudes of  20 and 

23 km.  The  estimated  deviation  (dashed curve) envelopes the  real deviation 

quite well. As mentioned in  the  methane case, it is obvious  again that  the 

estimated deviation is nearly  constant  with height and  that  the height constant 

a priori covariance matrix S a  dominates  the  shape of the  estimated  deviation. 

The  altitude  distribution of the relative deviation (Fig. 11) leads to a result 

(rehms.: 29.2 %) which is not desired. The real relative  deviation (solid curve 

in Fig. 11) is smaller than 10 % above 20 km. At  lower altitudes where the 

absolute values of the ozone profile become  quite  small, the  relative deviation 

exceeds 50 % both in terms of estimated  standard deviation and deviation of 

the  actual retrieval. This suggests that  the chosen approach of regularization 

constant  with  altitude  may  be  non-satisfactory at  least for retrieval  problems 

with  emphasis  on lower stratosphere ~ upper  troposphere. 

For a further diagnostic of this  result we  will focus on the  vertical resolution 

which  is displayed in Fig.  12.  The mean vertical resolution which  is driven by 

the chosen regularization is 3.42 km and exceeds the  distance of two  consecutive 

tangent heights (3  km). Especially in the range  between 20 km and 50 km the 

vertical resolution is 3.5 km and worse. The smoothing by the retrieval in this 

region  seems to be  too  strong. In contrast, below 15 km the  smoothing is quite 

small. Here the vertical resolution is pushed  towards values smaller than  2  km, 

at  the cost of large random  errors  (Fig.  11).  This clearly is a result of under- 

regularization at  altitudes below 15  km. A stronger  regularization in this height 
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range  should lead to smaller relative  deviations. 

Therefore we will  choose a height dependent a priori covariance matrix on  pur- 

pose to receive a smaller relative deviation in the lower part of the ozone profile. 

In contrast to the regularization above, we  now assess the behavior of the re- 

trieval  where  an  altitude-dependent  regularization  matrix is applied.  The vari- 

ances are set proportional to  the  squared volume  mixing ratios of the  related 

altitude (see Tab.  4),  and  the decay  towards off-diagonal elements  according to 

Eq. (13)  involves a correlation parameter of w = 2.0 x lo6 km. 

Again the  dotted line  in Fig. 13  represents  the a priori and  the  initial guess 

profile and  the dashed line the ozone-hole reference profile,  like in  the previ- 

ous  example.  The solid line shows the  retrieved ozone  profile for the height 

dependent  regularization which matches  the reference profile quit well. But  the 

absolute  rms  error is  0.176 ppmv and is more than 50 % larger  than in the 

height  constant case (see Fig. 9). As it  can  be seen in Fig. 14 the  real  absolute 

deviation (solid line) is often larger  than 0.2 ppmv in the region between 20 km 

and 40 km. Nearly all values of the  real  absolute deviation lie inside  the  esti- 

mated  standard  deviation.  This  means  that  the  estimated  error is considerable 

larger  than  the real error. As expected,  the height-dependent constraint does 

not  improve the  absolute  error, while the  relative  rms profile error is reduced 

considerably  (Fig. 15) to 13.6 %. Especially in the  altitude region below  20 km 

the  real  relative deviation (solid line in Fig. 15) is much smaller than in the 

previous case. The goal of reducing the  relative  error was successfully achieved 

at  the cost of increased absolute  error.  In  the following we will explain  this 
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behavior. 

For a regularization  matrix S, constant  with  altitude,  the  regularization  term 

in optimal  estimation 

becomes a quantity which stresses the  absolute difference between the  estimated 

and  the a priori profile in a  height-independent way. In  the case of the ozone 

profile, where the  absolute  vmr values can differ considerably  between 8 km 

and 53 km,  the  absolute  constraint will be  the  same for all heights.  This 

means that 0.1 ppmv  error at  8 km is considered  equal a 0.1 ppmv  error at  

35 km. For this reason the  estimated  absolute deviation is nearly height con- 

stant  (Fig. 14) and  the absolute rms is very small. Therefore a height constant 

constraint minimizes the absolute deviation.  In  contrast to  that a well-chosen 

height dependent a priori covariance matrix S, will  minimize the  relative devi- 

ation.  The differences  in Eq. (26) are weighted  with the scaled absolute values 

of the a priori profile. Therefore the  percentual  deviation  at 8 km has  the  same 

weight as at  53 km. The weight of the  absolute deviation will not  be so strong 

which cause large absolute errors in the region between 20 and 40 km (see Fig. 13 

and Fig. 14). 

The choice of the a priori covariance matrix will substantially influence the re- 

trieval result. Especially a height constant  or a height dependent constraint will 

minimize the  absolute or the relative deviation. So the choice of the  constraint 

depends  on  the  requirement  on  the  result. We also performed retrieval calcu- 

lations  where  the a priori covariance matrix is only less height dependent. As 
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expected,  the  absolute  and  the relative errors lie between the  errors presented 

here. 

The height-dependent  regularization  leads to a  vertical resolution which  is nearly 

independent  from height (see Fig. 16). There  are only  some altitudes where the 

resolution is worse than 3.5 km.  The mean  vertical resolution is calculated to 

3.12 km and is slightly smaller than in the height constant case (3.42 km). 

6 Summary and Conclusions 

The inverse problem of retrieving a vertical  atmospheric  constituent profile  from 

spectroscopic limb  radiance  measurements was formulated  as  a least squares 

problem. A constraining  term of a  quadratical form was added to the  iterative 

solution formula in order to obtain  a  stable  solution  on  a fine altitude grid. The 

optimal  estimation  method  and  the  Tikhonov  regularization  have  been assessed 

in more  detail.  The  only difference between  these  two  kinds of retrieval methods 

is the  regularization  matrix R, which  is S i 1  in the  optimal  estimation case and 

aLTL for Tikhonov. It was  shown that for a special choice of the a priori 

covariance matrix S, the discrete first derivative operator L1 can be simulated. 

For this  kind of a priori covariance matrix  the solution is not  biased but  just 

smoothed. 

To characterize  the  gained retrieval result accurately, several diagnostic tools 

were used. Which retrieval errors  are  expected  because of noisy  measurements 

tell us the  estimated  absolute  and relative deviation.  The composition of the 
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state  parameter at one  height is analyzed by the averaging  kernel and  the cor- 

responding  vertical  resolution.  And finally a reliable quantity of the degrees 

of freedom for signal  is  determined by the singular value decomposition of the 

transformed  Jacobian. It could be shown that all these  quantities give a com- 

plete  analysis of the retrieval concerning  noisy measurements  and  regularization 

in the retrieval  formula. 

The derived retrieval  formula and  the diagnostic  tools were applied to typical 

MIPAS ENVISAT methane  and ozone retrievals. For the case of methane,  the 

power of the developed retrieval  technique could be  demonstrated by means of 

the available diagnostic  tools which  allow a  detailed  analysis of the retrieved 

profile. For ozone,  a reference profile was chosen, which is  typical for ozone-hole 

conditions. The calculations were performed for a  height constant  and a  height 

dependent a priori covariance matrix S a .  It could be shown the former will 

minimize the  absolute  and  the  latter  the relative rms  error. Depending  on the 

requirement  on the solution, the constraining term  can  be  adapted. 

Appendix A:  Transformation  of the Linear Re- 

trieval Equation 

The retrieval  equation for optimal  estimation  in the linear  case  (Eq. (18)) 

Et = AX + (I - A)x, + D y e  
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depending on the averaging kernel 

A = [KTS,'K + S;l]-'KTS,'K 

and  the sensitivity  functions 

D, = [KTSLIK + S,']-'KTSr' 

shall  be  transformed that  the matrices A and D, become diagonal. The follow- 

ing  transformations  are  necessary to do this: 

- T -  
With K  K = S?KTS;'KS?, the  properties of the SVD, and (27) the averaging 

kernel  becomes 

and  the sensitivity  functions are 
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In multiplicating Eq. (18) with V S a  and  putting (27) - (31) in it we get for 

the  transformed retrieval equation in the linear case 

T -1 
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Table  1:  Geometrical and  spectral  characteristics of MIPAS on  ENVISAT for 

the considered  observation  mode. 

Vertical scan  range 

Vertical resolution 

Spectral  range 

Spectral resolution 

NESR 

between  8 and 53  km at tangent  height 

= 3 km (width of the FOV) 

685  cm-' - 2410 cm" 

or 4.15 pm - 14.6 pm 

= 0.035 cm" 

between 50 nW/(cm2 sr cm-') at  685 cm" 

and 4.2 nW/(cm2 sr cm") at  2410  cm-' 
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Table 2:  Microwindows of CH4 and  the corresponding  occupation matrix.  The 

entry  'T' means that  the microwindow is used at this  tangent height and  'F' 

means that  the microwindow is neglected. 

Microwindows / I  Occupation  matrix  (tangent  heights [km]) I 
[cm-'1 1 1  8 11 14 17 20 23 26  29 32  35 38 41 44 47 50 53 1 

1219.500-1220.000 

1228.450-1229.050 

1229.900-1230.400 

1271.300-1271.700 

1303.300-1303.800 

1305.550-1306.150 

1326.900-1327.500 

1331.975-1332.825 

1355.000-1356.750 

T T T T T T T T T T T T T T T T  

T T T T T T T T T T T T T T T T  

F T T T T T T T T T T T T T T T  

F F T T T T T T T T T T T T T T  

F F F T T T T T T T T T T T T T  

F F F F T T T T T T T T T T T T  

T T T T T T T T T T T T T T T T  

T T T T T T T T T T T T T T T T  

T T T T T T T T T T T T T T T T  
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Table 3: Microwindows of 0 3  and  the corresponding  occupation matrix.  The 

entry 'T' means that  the microwindow is used at this  tangent  height  and 'F' 

means that  the microwindow is neglected. 

Microwindows Occupation matrix  (tangent heights  [km]) 

[cm-l] 

F F F F T T T F F F F F F F F T 722.675-  722.900 

8 11 14 17 20 23 26  29  32 35 38 41 44 47 50 53 

763.500-  764.650 T T T T F T  T F F F F F F F F F 

768.400-  768.800 F T T  T T T T F F F F F F F F F 

777.450-  778.525 T T T F F F F F F F F F F F F F 

1031.600-1033.150 F F F F T  T  T T T T T T T T T T 

1052.600-1053.800 

T T T  T  T  T  T T T T T T  T  T T T 2120.000-2120.800 

T F F F F F T  T T F F F F F F T 
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Table 4:  Height dependent  diagonal  elements of the a priori covariance matrix 

)r ozone. 

Altitude [km] 

8.0 

9.0 

10.0 

11.0 

12.0 

13.0 

14.0 

15.0 

16.0 

17.0 

18.0 

19.0 

20.0 

21.0 

22.0 

23.0 

24.0 

25.0 

26.0 

27.0 

28.0 

29.0 

30.0 

Variance [ppmv2] 

6.14186  x lo1 

1.45038  x lo2 

2.97483 x lo2 

7.96904  x lo2 

1.65293  x lo3 

2.55242  x lo3 

4.36585  x lo3 

7.30176  x lo3 

1.30639  x lo4 

2.43128 x104 

4.34597 x 104 

7.11091 x104 

1.14772  x lo5 

1.58214  x lo5 

2.29512  x lo5 

2.99770  x lo5 

3.69430 x lo5 

4.51995 x lo5 

5.01687  x lo5 

5.53970  x lo5 

6.11512 x105 

6.74699  x lo5 

7.40992  x lo5 

L 

Altitude [km] 

31.0 

32.0 

33.0 

34.0 

35.0 

36.0 

37.0 

38.0 

39.0 

40.0 

41.0 

42.0 

43.0 

44.0 

45.0 

46.0 

47.0 

48.0 

49.0 

50.0 

51.0 

52.0 

53.0 

Variance [ppmv2J 

8.17027  x lo5 

8.96774  x lo5 

9.61802  x lo5 

1.01022  x 106 

1.05982 x lo6 

1.05582  x IO6 

1.05183 x lo6 

1.02309  x lo6 

9.70634  x lo5 

9.19558 x lo5 

8.12047 x105 

7.11219 x105 

6.23278  x lo5 

5.46953  x lo5 

4.75611 x lo5 

3.95917 x lo5 

3.23526  x lo5 

2.62460  x IO5 

2.11383  x lo5 

1.65828 x lo5 

1.39178  x lo5 

1.14861  x lo5 

9.28772  x lo4 
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Figure 1: Result of the  optimal  estimation retrieval in case of an scaled methane 

reference profile and  a  regularization  constant  with  height. 
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Figure 2: Real and  estimated  absolute  deviation. 
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Figure 4: Scaled  averaging kernel. The large dark  area corresponds to zero-level. 
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Figure 5: Averaging kernel  column-wise. 
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Figure 6: Vertical resolution  computed  via the widths of the columns of the 

averaging kernel. 
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Figure 7: Singular values of the  transformed  Jacobian (see Eq. (19)). 
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Figure 8: Proportion of the measurement  and the a priori (see Eq. (22)). 
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Figure 9: Result of the  optimal  estimation retrieval in case of an ozone-hole 

reference profile and a  regularization  constant  with  height. 
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Figure 11: Real and  estimated relative deviation. 
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Figure 12: Vertical resolution  computed  via the widths of the columns of the 

averaging  kernel. 
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Figure 13: Result of the  optimal  estimation retrieval in case of an ozone-hole 

reference  profile and  a  regularization  dependent  on height. 
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Figure 14: Real and  estimated  absolute  deviation. 
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averaging  kernel. 
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